Organ-Specific Quantitative Genetics and Candidate Genes of Phenylpropanoid Metabolism in Brassica oleracea

نویسندگان

  • Marta Francisco
  • Mahmoud Ali
  • Federico Ferreres
  • Diego A. Moreno
  • Pablo Velasco
  • Pilar Soengas
چکیده

Phenolic compounds are proving to be increasingly important for human health and in crop development, defense and adaptation. In spite of the economical importance of Brassica crops in agriculture, the mechanisms involved in the biosynthesis of phenolic compounds presents in these species remain unknown. The genetic and metabolic basis of phenolics accumulation was dissected through analysis of total phenolics concentration and its individual components in leaves, flower buds, and seeds of a double haploid (DH) mapping population of Brassica oleracea. The quantitative trait loci (QTL) that had an effect on phenolics concentration in each organ were integrated, resulting in 33 consensus QTLs controlling phenolics traits. Most of the studied compounds had organ-specific genomic regulation. Moreover, this information allowed us to propose candidate genes and to predict the function of genes underlying the QTL. A number of previously unknown potential regulatory regions involved in phenylpropanoid metabolism were identified and this study illustrates how plant ontogeny can affect a biochemical pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea.

The enlarged inflorescence (curd) of cauliflower and broccoli provide not only a popular vegetable for human consumption, but also a unique opportunity for scientists who seek to understand the genetic basis of plant growth and development. By the comparison of quantitative trait loci (QTL) maps constructed from three different F(2) populations, we identified a total of 86 QTL that control eigh...

متن کامل

Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea.

The evolution of plant morphologies during domestication events provides clues to the origin of crop species and the evolutionary genetics of structural diversification. The CAULIFLOWER gene, a floral regulatory locus, has been implicated in the cauliflower phenotype in both Arabidopsis thaliana and Brassica oleracea. Molecular population genetic analysis indicates that alleles carrying a nonse...

متن کامل

Identification of Antioxidant Capacity -Related QTLs in Brassica oleracea

Brassica vegetables possess high levels of antioxidant metabolites associated with beneficial health effects including vitamins, carotenoids, anthocyanins, soluble sugars and phenolics. Until now, no reports have been documented on the genetic basis of the antioxidant activity (AA) in Brassicas and the content of metabolites with AA like phenolics, anthocyanins and carotenoids. For this reason,...

متن کامل

The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea.

A population of 150 doubled haploid lines of rapid cycling Brassica oleracea, derived from an F1 from a var. alboglabra x var. italica cross, was scored for flowering time in two trials. Using information on 82 mapped molecular markers, spread evenly across the nine linkage groups, QTL were identified at six locations; one each on linkage groups O2 and O3 and two each on linkage groups O5 and O...

متن کامل

Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait Loci analysis of the Brassica C genome.

Natural genetic variation in fatty acid synthesis and modification pathways determine the composition of vegetable oils, which are major components of human diet and renewable products. Based on known pathways we combined diversity and genetic analysis of metabolites to infer the existence of enzymes encoded by distinct loci, and associated these with specific elongation steps or subpathways. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015